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Abstract

Free wave propagation patterns for general three-coupled periodic structures are investigated by means of the transfer

matrix approach. It is shown that an exhaustive description of the propagation domains requires spaces that are stratified

in homogeneous regions, whose dimension is given by the number of invariants of the transfer matrix characteristic

equation and whose boundaries are represented by codimension-one manifolds. Three types of three-coupled periodic

mechanical models characterized by constitutive elastic and/or inertial coupling between mono- and bi-coupled dynamics,

namely pipes, thin-walled beams and truss beams, are considered. From the design standpoint, an adequate representation

of the propagation domains pattern is obtained through a nonlinear mapping from the space of the invariants to the

physical parameters plane. The analyzed models give rise to equations of motion where the three-coupled nature stems

from the coupling between transversal (bi-coupled) and longitudinal (mono-coupled) dynamics for the pipes and truss

beams, whilst coupling occurs between transversal and torsional (mono-coupled) dynamics when it comes to the thin-

walled beams. A mechanical interpretation associated with the bounding frequencies of the propagation regions is given

and the evolution of the propagation properties when coupling parameters tend to vanish is discussed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Periodic structures are called n�coupled when their modular elements are coupled through n degrees of
freedom [1]; in this work, the dynamics of three-coupled periodic structures is analyzed through the single-
element transfer matrix properties. The well-known transfer matrix method was also investigated to analyze
periodic structures by a number of authors including [2–5] and extended to the so-called wave vector approach
in Refs. [6,7]. The latter is based primarily on the diagonalization of the single-element transfer matrix to avoid
the numerical difficulties that may arise in the transfer matrices multiplication in case of a large number of
periodic elements. The main advantage of relying on transfer matrices lies in the reduction of the dimension of
the whole periodic structure problem to 2n. A number of applications pertaining to multi-coupled periodic
structures have been proposed so far. To name but a few, periodic and disordered truss beams were examined
in Refs. [5,8–10], generic structural networks in Refs. [6,11] and piecewise periodic structures in Refs. [12,13].
Transfer matrix mathematical insights were also handled in Refs. [14,15]. As shown in Ref. [16], the
propagation properties of periodic structures are thoroughly described on spaces with the minimum dimension
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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necessary to qualitatively characterize the type of eigenvalues. These spaces, whose dimension is given by the
number of invariants of the transfer matrix characteristic equation, are stratified in homogeneous regions
bounded by codimension-one manifolds. Recently instances of three-coupled periodic mechanical models were
also addressed by the authors [17]. In this work, the aforementioned study is extended to determine the
bounding manifolds defining pass, stop and complex regions on the space of the invariants of general three-
coupled periodic structures. Also, this system-independent representation is specialized to handle three
paradigmatic models chosen to represent structures whose three-coupled nature results from different sources.
Such models are pipes, characterized by elastic constitutive coupling, thin-walled beams, characterized by
inertial constitutive coupling, and truss beams characterized by both of them. Periodic pipes resting on elastic
supports, modeled as thin cylindrical shells undergoing axisymmetric (breathing) modes of vibration, are
considered [18]. Thin-walled beams with symmetric cross-section resting on elastic supports undergoing
flexural–torsional oscillations are then analyzed. Finally, truss beams are studied. As far as the latter are
concerned, equivalent continuum models were proposed in Refs. [20,21]. According to this approach, being
mainly interested to the global dynamic behavior, local periodicity (the single truss module) is studied by using
an equivalent continuum model obtained through homogenization techniques [19]. Then, global periodicity
(evenly spaced supports) is examined by deriving the transfer matrix. The selected models give rise to
equations of motion where the three-coupled nature stems from the coupling between transversal (bi-coupled)
and longitudinal (mono-coupled) dynamics for the pipes and truss beams, respectively. For thin-walled beams,
by contrast, coupling arises between transversal and torsional (mono-coupled) dynamics. In pipes, the elastic
coupling occurs as a result of the Poisson effect; in the equivalent truss models, the inertial coupling is due to
both the different cross-sections of top and bottom bars and to the difference between top and bottom nodal
mass of the truss module; in thin-walled beams, instead, inertial and elastic coupling occurs whenever the
centroid and the flexural center fail to coincide. Consequently, the matching coupling parameters are the
Poisson coefficient for pipes, either the relative cross-sections of the top and bottom bars and the relative
masses of the top and bottom nodes for the equivalent truss beams, and the distance between the centroid and
the flexural center for the thin-walled beams. For each model, the boundaries of the propagation regions are
determined in the physical parameters’ space. Furthermore, the evolution of the propagation properties is
discussed when the coupling parameters tend to vanish, thus leading to uncoupled equations. They correspond
to the longitudinal bar and either the beam on a spring bed or the Euler–Bernoulli beam, for the pipes or the
equivalent truss beams, respectively; the torsional bar and the Euler–Bernoulli beam for the thin-walled
beams. Extending Mead’s results a mechanical interpretation of the bounding frequencies of the propagation
regions is eventually provided.

2. Propagation regions on the space of the invariants

A generic periodic structure whose elements are coupled through n ¼ 3 degrees of freedom to the adjacent
ones is considered. The dynamic behavior of these three-coupled structures is properly described by means of
the transfer matrix method. Let zTk ¼ ðd

T
k f

T
k Þ be the state vector of generalized displacement dk and forces fk at

the coupling point k; under the transfer matrix approach, the state vector zkþ1 at the coupling point k þ 1 is
related to the state vector zk by

zkþ1 ¼ Tzk, (1)

where T is the 6� 6 frequency-dependent transfer matrix which is real in absence of damping. It follows that
the matrix T and, more specifically, its invariants summarize all the propagation features of the periodic cell.
Due to the spectral properties of the symplectic matrix T [22], the characteristic equation det½T� lI� ¼ 0 reads

l6 þ I1l
5
þ I2l

4
þ I3l

3
þ I2l

2
þ I1lþ 1 ¼ 0, (2)

where the real coefficients I1, I2 and I3 are the invariants of T. Therefore the reversibility property halves the
number of the transfer matrix invariants.

The meaning of the eigenvalues li emerges from the Floquet’s theorem [22]: there exist free wave motions
(characteristic waves) in which zkþ1 ¼ lizk, each associated with an eigenvalue of T. If jlijo1 the wave
amplitude decays in the positive direction (forward wave), if jlij41 it decays in the negative direction
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(backward wave), if jlij ¼ 1 no attenuation exists in the two directions. As known, because of the reversibility
of the coefficients of Eq. (2), should we put that li is an eigenvalue, then l�1i is an eigenvalue (called the adjoint

eigenvalue) too. Therefore, forward and backward waves always exist in pairs and have both the same
propagation properties. As a result, three eigenvalues l1, l2 and l3 such that jlijp1 ði ¼ 1; 2; 3Þ, completely
define the propagation properties of a three-coupled periodic structure. As shown in literature, previous
findings can be restated in terms of the propagation constants mi, instead of the eigenvalues li, by defining
li ¼ emi . This position maps the unitary circle of the ReðliÞ–Im(li) plane into the left half-space of the
ReðmiÞ–Im(mi) plane.

To solve (2) it would be convenient to rewrite it in terms of the propagation constant m. By letting l ¼ em

and multiplying by e�3m, Eq. (2) reads

ðe3m þ e�3mÞ þ I1ðe
2m þ e�2mÞ þ I2ðe

m þ e�mÞ þ I3 ¼ 0, (3)

which is also written as

2 cosh 3mþ 2I1 cosh 2mþ 2I2 cosh mþ I3 ¼ 0. (4)

After some algebraic manipulation the latter equation can be expressed as a cubic equation in cosh m as
follows:

cosh3 mþ 1
2

I1 cosh
2mþ 1

4
ðI2 � 3Þ cosh mþ 1

8
ðI3 � 2I1Þ ¼ 0. (5)

To discuss the three roots F1;2;3 of Eq. (5) for cosh m, the cases F1;2;3 2 R and F1;2;3 2 C are separately
considered. As far as F 1;2;3 2 R, if F 1;2;3 2 I :¼ ½�1; 1�, then m ¼ iW and l ¼ eiW is complex with unit modulus;
if F1;2;3eI, m ¼ aþ ijp with j integer, and l ¼ �ea is real. Differently, if F 1;2;3 2 C, m ¼ aþ iW and l ¼ eaþiW is
complex with modulus different from 1. The possible location of the eigenvalues on the complex plane are
summarized in Fig. 1. The wave propagation characteristics of three-coupled periodic structures can be
properly described through a geometric representation on the space of the invariants I1–I2–I3 (Fig. 2). When
cosh m ¼ �1, two surfaces are obtained in the I1–I2–I3 space given, respectively, by

R :¼ fðI1; I2; I3Þj2� 2I1 þ 2I2 � I3 ¼ 0g,

S :¼ fðI1; I2; I3Þj2þ 2I1 þ 2I2 þ I3 ¼ 0g. (6)

Further surfaces, dividing the real roots of Eq. (5) from the complex ones, are given by

P1;2 :¼ fðI1; I2; I3Þj27I1 � 27I3 � 2I31 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9þ I21 � 3I2Þ

3
q

þ 9I1I2 ¼ 0g. (7)
Fig. 1. Transfer matrix eigenvalues scenarios: (a) pass–pass–pass; (b) pass–pass–stop; (c) pass–stop–stop; (d) complex-pass; (e) complex-

stop; (f) stop–stop–stop.
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Fig. 2. Propagation zones displayed in the space ðI1; I2; I3Þ of the invariants.

Fig. 3. Propagation zones displayed in the plane ðI3; I2Þ of the invariants for I1 ¼ 0.
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The four surfaces R;S and P1;2 divide the space of the invariants in domains (propagation zones) where the
eigenvalues do not differ in type. In Fig. 3 the section I1 ¼ 0 of the space of the invariants is shown, where the
curves r, s, p1;2 represent the traces of the matching surfaces on the chosen plane; the propagation zones are
labeled according to the notation commonly used in literature. As well known [5], such eigenvalues govern the
stationary wave transmission properties: if the eigenvalues lie on the unit circle, then free waves propagate
harmonically without attenuation (pass band, P); if the eigenvalues are real, then free waves decay without
oscillations (stop band, S); furthermore, if the coupling coordinates are more than one, pairs of complex
conjugate eigenvalues with modulus different from 1 can exist and harmonic propagation with attenuation of
the characteristic waves takes place (complex-band, C). Accordingly, the region where the three pairs of l lay
all on the unit circle is referred to as pass– pass– pass (PPP); the regions where two pairs of l lay on the unit
circle while the other pair is real are referred to as pass– pass– stop (PPS); the regions where one pair lays on the
unit circle while the remaining two pairs of l are real are referred to as pass– stop– stop (PSS); the regions
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where only real pairs of eigenvalues occurs are the stop– stop– stop (SSS) domains. Moreover, the curves p1;2

bound the regions characterized by a pair of complex conjugate eigenvalues and the remaining pair is either
real, complex-stop (CS), or lays on the unit circle, complex-pass (CP). It is worth noticing that only the PPP
and PPS regions, unlike the remaining domains, are bounded.

3. Mechanical models transfer matrix derivation

The three-coupled nature of the mechanical models that will be considered in the following sections results
from the sum of mono-coupled and bi-coupled dynamics. The relevant equations of motion are indeed
characterized by the coupling between either a longitudinal or a torsional (mono-coupled) dynamics and a
transversal (bi-coupled) one. In order to derive the single-element transfer matrix, it is essential to detect the
end forces given the end displacements. This implies the solution of a boundary-value problem of the form

M€uþLu ¼ 0 in B;

KHu ¼ dH on @BH H ¼ L;R;
(8)

where Eq. (81) are the field equations defined over the domain B, representing the single element, and Eq. (82)
are the kinematic boundary conditions at the left and right element interfaces. The terms M and L represent
inertial and elastic linear differential operators, respectively, acting over the displacement field u ¼ uðx; tÞ,
while KH is the linear kinematic boundary conditions operator acting on the left @BL and right @BR element
interfaces. The Eq. (81) can be put in the form

Muu Muv

Mvu Mvv

" #
€u

€v

� �
þ

Luu Luv

Lvu Lvv

" #
u

v

� �
¼

0

0

� �
in B, (9)

where the terms u and v represent the mono-coupled and bi-coupled kinematic variables, respectively. The
solution, given by

u

v

� �
¼

a

b

� �
ebxeiOt (10)

gives rise to the eigenvalue problem Lðb;OÞ a ¼ 0 in B, where

L ¼
LuuðbÞ � O2Muu LuvðbÞ � O2Muv

LvuðbÞ � O2Mvu LvvðbÞ � O2Mvv

" #
; a ¼

a

b

� �
(11)

and the algebraic operators M and L have been introduced. The wavenumbers bi i ¼ 1; . . . ; 6 can be
determined by solving the characteristic equation:

b6 þ J1b
4
þ J2b

2
þ J3 ¼ 0, (12)

where Ji ¼ JiðOÞ ði ¼ 1; 2; 3Þ. Since Eq. (12) admits six roots, the general solution can be written as

u

v

� �
¼
X6
k¼1

ck

ak

bk

 !
ebkxeiOt, (13)

where the coefficients ak, bk are grouped as follows:

ak ¼ LuvðbkÞ � O2Muv;

bk ¼ O2Muu � LuuðbkÞ;
k ¼ 1; 2;

ak ¼ O2Mvv � LvvðbkÞ;

bk ¼ LvuðbkÞ � O2Mvu;
k ¼ 3; 4; 5; 6, (14)

so that the eigenvalue problem for uncoupled cases can still be solved. By substituting Eq. (13) into Eq. (82)
and solving for ck, the linear homogeneous functions u over dH are obtained. By imposing the equilibrium at
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the interfaces through the dynamic boundary conditions:

DHu ¼ fH on @BH H ¼ L;R (15)

the end forces can be determined as

ZLL ZLR

ZRL ZRR

" #
dL

dR

 !
¼

fL

fR

 !
. (16)

In Eq. (16) the matrix Z ¼ ½ZHK �, with H;K ¼ L;R, represents the frequency-dependent dynamic stiffness
matrix, where L and R refers to left and right side of the modular element, respectively. The transfer matrix T,
which relates the right end displacements and forces to the left ones, is eventually obtained as

dR

fR

 !
¼

Tdd Tdf

�Tfd �Tff

" #
dL

fL

 !
(17)

by using the well-known relations [23]:

Tdd ¼ �Z
�1
LRZLL;Tdf ¼ Z�1LR;Tfd ¼ �ZRL þ ZRRZ

�1
LRZLL;Tff ¼ �ZRRZ

�1
LR. (18)

Once the transfer matrix is obtained, its invariants can be expressed in terms of physical parameters; then, the
traces of the surfaces given by Eqs. (6) and (7) can be mapped into a plane of two control parameters duly
selected. Among them, the frequency is the most significant one and is always selected so that the curves r, s,
and p1;2 provide the bounding frequencies of the propagation regions.

As singled out by Mead [1], if the interest lies in the mechanical interpretation of the bounding frequency of
multi-coupled periodic structures, it is then crucial to distinguish between two types of coupling coordinates.
When symmetric structural elements vibrate in a symmetric mode, some of the matching pairs of coupling
coordinates at either end have the same sign and magnitude (type (i) coordinates) whereas the remaining pairs
have opposite sign and equal magnitude (type (ii) coordinates). The opposite occurs for anti-symmetric
modes. For periodic structures of symmetric multi-coupled elements, the bounding frequencies of the wave
propagation zones are identical to the natural frequencies of a single element with the two types of coupling
coordinate either locked or free. In the following sections type (i) and type (ii) coordinates of each three-
coupled mechanical model discussed will be identified and the relationship between bounding and natural
frequencies will be shown to obey to Mead’s results.

4. Periodic axisymmetric cylindrical shells

The general derivation of the propagation regions for three-coupled structures is specialized in this section
to deal with periodic pipes sketched in Fig. 4. The pipes are modeled as thin cylindrical shells undergoing
axisymmetric (breathing) modes of vibration and the periodicity is provided by evenly spaced stiffeners. The
displacement field is defined by the longitudinal and transverse components uðxÞ and vðxÞ, respectively, and by
a rotation jðxÞ ¼ v0ðxÞ, x being the abscissa. The parameters that are involved in the model are the following:
Young modulus E, Poisson coefficient n, shell thickness s, mass density r, radius r and element length l.
Fig. 4. Periodic cylindrical shells.
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Introducing the nondimensional quantities

x̂ ¼
x

r
; û ¼

u

r
; v̂ ¼

v

r
; s ¼

s

r
; ‘ ¼

l

r
; t ¼ ot, (19)

where o2 ¼ E=½rr2ð1� n2Þ�, the field equations can be written, omitting the hat, as

€u� u00 � nv0 ¼ 0; €vþ
s2

12
v0000 þ vþ nu0 ¼ 0. (20)

In view of the propagation properties analysis that follows on, it is worth stressing that, as shown by the Eq.
(20), the coupling between longitudinal and transversal dynamics is governed by the Poisson ratio n.
Moreover, v represents the type (i) coordinate while u and j are type (ii) coordinates. The kinematic boundary
conditions are:

uð0Þ ¼ uL; uð‘Þ ¼ uR; vð0Þ ¼ vL; vð‘Þ ¼ vR; v0ð0Þ ¼ jL; v0ð‘Þ ¼ jR. (21)

By defining the equivalent axial and transversal stiffnesses provided by the circumferential stiffeners at the
ends of the single element as ku=2 and kv=2, respectively, and setting

nL;R ¼
1� n2

Es
NL;R; qL;R ¼

12 1� n2
� �

r2

Es3
QL;R; mL;R ¼

12 1� n2
� �

r

Es3
ML;R,

ku ¼
1� n2

s
ku

2E
; kv ¼

6ð1� n2Þ
s3

kv

E
, ð22Þ

the dynamic boundary conditions are given by

½u0 þ nv� kuu�0;‘ ¼ �nL;R; ½�v000 � kvv�0;‘ ¼ �qL;R; v000;‘ ¼ �mL;R. (23)

Therefore, in order to derive the element transfer matrix according to the procedure set forth in Section 2, the
matrix L in Eq. (11) becomes

L ¼

�b2 � O2 �nb

nb 1þ
s2

12
b4 � O2

2
64

3
75. (24)

Starting from the eigenvalue problem governed by the matrix (24), the element transfer matrix is obtained and
the invariants are expressed in terms of the physical parameters. The propagation regions are mapped into
planes of two control parameters where the curves r, s, p1;2 in Fig. 3 give rise to a number of branches. The
selected parameter relevant to the results shown in Figs. 5 and 6 are ‘ ¼ 2:0, s ¼ 0:1 and ku ¼ 50:0.
Fig. 5. Propagation zones on the O–kv plane for n ¼ 0:5.
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Fig. 6. Propagation zones on the O–n plane for ku ¼ kv ¼ 50:0.
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In the limit case n ¼ 0, the longitudinal and transversal dynamics are uncoupled so that the resulting propagation
scenario can be interpreted as the superposition of the mono-coupled (bar) and the bi-coupled (beam on elastic
foundations) scenarios. On the one hand, in the mono-coupled problem, the propagation regions can be either pass
(P) or stop (S) and the curves bounding the pass regions, where the eigenvalues lie on the unit circle, can be readily
determined by the condition jtrðTÞj ¼ 2. This condition applied to the transfer matrix associated to Eq. (20) with
n ¼ 0 and ku ¼ 0:0, leads to 2 cos O‘ ¼ 2, so that, for the bar, the longitudinal waves are always in a pass band,
regardless of the value of O. On the other, the bi-coupled problem of the beam on elastic foundation resting on
elastic translational supports behaves qualitatively like the Euler beam on elastic supports studied in Ref. [16]. Thus,
the overall propagation scenario is characterized by the superposition of the beam propagation regions, starting
from the cut-on frequency (O41) [18], and the everywhere pass region of the bar. In Fig. 5 the propagation zones
are shown on the O� kv plane for n ¼ 0:5 and ku ¼ 50:0; the propagation regions representation obeys the three-
coupled nature of the problem, as proven by the appearance of SSS and CS regions. Fig. 6 shows the propagation
regions in the O2n plane, for ku ¼ kv ¼ 50:0. Thus, the evolution of the propagation scenario as the coupling
parameter n varies in the range 0:0pnp0:5, for given ku and kv, can be analyzed. As expected, when transversal and
longitudinal dynamics are uncoupled (n ¼ 0), the flexural natural frequencies of the hinged–hinged single beam,
given by On ¼ ½1þ ðnp=‘Þ

4s2=12�1=2, correspond to bounding frequencies provided by either the branches r or s,
namely O1 ¼ 1:0025 (r), O2 ¼ 1:0398 (s), O3 ¼ 1:1878 (r). Moreover, the remaining branches of the same curves
correspond to the sliding–sliding single-beam natural frequencies and they tend asymptotically to the fixed–fixed
case when kv !1. The natural frequencies of either the free–free or fixed–fixed single bar are not displayed since
they are located at higher values of O (i.e. On ¼ np=‘). As the coupling rises (na0) the three-coupled dynamics
forces the bounding frequencies and the associated natural frequencies to bend. For example, the first three natural
frequencies of the hinged–hinged single element decrease implying a ‘‘softening’’ effect of the coupling parameter. In
particular, the first natural frequency decreases to the value O1 ¼ 0:8994, the second to O2 ¼ 0:8143 while the third
to O3 ¼ 1:1116; the crossing between the first and second natural frequency occurs at n ¼ 0:25. The crossed curves
in Fig. 6 represent the first six natural frequencies of the two element periodic pipe when v (type (i) coordinate) is
locked while u and j (type (ii) coordinates) are free. Their paths on theO–n plane are always within either a PSS or a
PPS region. As the periodic structure consists of two elements, two natural frequencies are found in each PSS region.
Moreover, as expected, for each pair, one natural frequency overlaps with a bounding frequency provided by either r

or s branches; for low values of n ðno0:25Þ such overlapping occurs according to the alternating sequence: r, s, r.
5. Periodic symmetric thin-walled beams

Thin-walled beams with symmetric cross-section undergoing flexural–torsional oscillations are analyzed in
this section (see Fig. 7a). The flexural–center axis is taken as the x-axis and the distance between the flexural
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Fig. 7. Periodic thin-walled beam: (a) beam element displacement field and (b) beam cross-section.
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center F and the centroid C is equal to zC , as sketched in Fig. 7b. The displacement field is defined by the
torsional rotation uðxÞ, transverse component vðxÞ, and by the flexural rotation jðxÞ ¼ v0ðxÞ. The parameters
entering the models are: mass density r, cross-section area A, polar moment of inertia IG (IF ¼ IG þ Az2C),
Young modulus E, moment of inertia I ¼ Iz, tangential elastic modulus G and torsional inertia J. Introducing
the nondimensional quantities

x̂ ¼
x

a
; v̂ ¼

v

a
; a ¼

Aa2

IF

; g ¼
aGJ

EI
; ‘ ¼

l

a
; s ¼

zC

a
; t ¼ ot, (25)

where o2 ¼ EI=ðrAa4Þ, the field equations read, omitting the hat, as

€u� as€v� gu00 ¼ 0; €v� s €uþ v0000 ¼ 0, (26)

where the warping torsional stiffness was neglected. In this case, it is worth pinpointing that, as shown by
Eq. (26), the coupling between torsional and transversal dynamics is governed by inertia terms through the
parameter s. For this model j represents the type (i) coordinate while u and v are type (ii) coordinates. The
kinematic boundary conditions are still given by the expressions (21) and by setting

qL;R ¼
QL;Ra2

EI
; tL;R ¼

TL;Ra

GJ
; mL;R ¼

ML;Ra

EI
; ku ¼

kua

GJ
; kv ¼

kva3

EI
, (27)

where ku and kv represent the rotational and transversal spring stiffnesses, the dynamic boundary conditions
are:

½u0 � kuu�0;‘ ¼ �tL;R; ½�v000 � kvv�0;‘ ¼ �qL;R; v000;‘ ¼ �mL;R. (28)

Therefore, in order to derive the element transfer matrix according to the procedure described in Section 2, the
matrix L in Eq. (11) becomes

L ¼
�gb2 � O2 saO2

sO2 b4 � O2

" #
. (29)

Starting from the eigenvalue problem governed by the matrix (29), the element transfer matrix is obtained and
the invariants are expressed in terms of physical parameters. The selected parameter relevant to the results
shown in Figs. 8 and 9 are ‘ ¼ 5:0, a ¼ 1:0 and g ¼ 2:0. In the s ¼ 0:0 borderline case the torsional and
transversal dynamics are uncoupled. Here, we can make the same remarks as in the case of pipes mentioned
above. In Fig. 8 the propagation zones are shown on the O–kv plane for s ¼ 2:0 and ku ¼ 6:0. Fig. 9 shows the
propagation regions in the O–s plane, for ku ¼ 6:0 and kv ¼ 2:0. Thus, the evolution of the propagation
scenario as the coupling parameter s varies in the range between 0:0psp2:0, can be analyzed. For s ¼ 0:0 the
flexural natural frequencies of the hinged–hinged single beam, On ¼ ðnp=‘Þ

2, correspond to the bounding
frequencies given by the branches of curves r and s, such as O1 ¼ 0:395 ðrÞ, O2 ¼ 1:579 ðsÞ. The natural
frequencies of the free–free (fixed–fixed) single bar (On ¼

ffiffiffi
g
p

np=‘) also correspond to branches of curves r and
s; the first two of them are located at O1 ¼ 0:888 (r) and O2 ¼ 1:777 (s). Moreover, the remaining branches of
the same curves correspond to the sliding–sliding single-beam natural frequencies. As noticed in the previous
model, as the coupling parameter s increases, the above-mentioned uncoupled natural frequencies of the single
element move along the r and s branches giving rise to involved paths. The lower natural frequencies of the
periodic thin-walled beam composed by two elements when j (type (i) coordinate) is locked while u and v
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Fig. 8. Propagation zones on the O–kv plane for s ¼ 2:0.

Fig. 9. Propagation zones on the O–s plane for ku ¼ 6:0 and kv ¼ 2:0.
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(type (ii) coordinates) are free are represented in Fig. 9 by the crossed curves. As expected such natural
frequencies are forbidden within either SSS or CS regions. Since the periodic system is composed by two
elements, two natural frequencies are found in each PSS region. Moreover, for each pair, one natural
frequency overlaps with a bounding frequency provided by either r or s branches. In this case, crossing and
veering phenomena in both bounding and natural frequencies can be observed around O ¼ 1:2 and 1.8.

6. Periodic equivalent truss beams

A truss beam structure is chosen as a three-coupled periodic mechanical model in this section as sketched in
Fig. 10. Hence, it is worth distinguishing between a local periodicity due to the single truss module and a global

periodicity due to evenly spaced elastic supports (see Fig. 10a). By assuming hm=lb1 and a large number of
truss modules between the supports and being mainly interested to the global dynamic behavior, an equivalent
continuum model, sketched in Fig. 10b, can be derived through a homogenization technique based on the
single-truss module properties (see Fig. 11). The slenderness of the single-truss beam span entails high-
frequency shear modes; by neglecting these modes a course shear indeformable continuum beam model is
assumed. By labeling Ab, At, Ad the areas of the bottom, top and diagonal bars, respectively, and with lm and
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Fig. 10. Periodic equivalent truss beam: (a) periodic truss beam and (b) equivalent continuum model.

Fig. 11. Truss beam module.
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hm the module width and height, respectively, and also with mt and mb the top and bottom nodal masses,
respectively, and setting

At ¼ ð1þ tÞAb; Ad ¼ ð1þ dÞAb; mt ¼ ð1þmÞmb; hm ¼ ð1þ hÞlm, (30)

the equivalent continuum model constitutive law can be expressed [19], for the restoring elastic forces, as

N ¼ EAbðxu0 � zelmv00Þ; M ¼ EAbð�zelmu0 þ Zl2mv00Þ (31)

and for the inertial masses as

muu ¼ mvv ¼
ð2þmÞmb

lm

; muf ¼ mfu ¼ �
1

2
m mbð1þ hÞ,

mff ¼
1

4
ð2þmÞð1þ hÞ2mb lm, ð32Þ

where the equivalent beam axis has been located at the mid-height of the truss beam and the axial deformation
and bending curvature are introduced according to the Euler–Bernoulli beam model. By setting
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H ¼ h2
þ 2hþ 2, the parameters entering Eqs. (31) and (32) are defined as

x ¼ ð2þ tÞ þ 2ð1þ dÞH�3=2; Z ¼
1

4
ðhþ 1Þ2ðtþ 2Þ; ze ¼

1

2
ð1þ hÞt,

zi ¼
1

2

ð1þ hÞm

2þm
; m ¼

1

4
ð1þ hÞ2. ð33Þ

By introducing the nondimensional quantities

x̂ ¼
x

lm

; û ¼
u

lm

; v̂ ¼
v

lm

; ‘ ¼
l

lm

; t ¼ ot, (34)

where o2 ¼ EAb=½mblmð2þmÞ�, the field equations become

€u� zi €v
0
� xu00 þ zev

000 ¼ 0; €v� m€v00 þ zi €u
0
þ Zv0000 � zeu000 ¼ 0. (35)

As shown by Eq. (35), the coupling between longitudinal and transversal dynamics is governed by the
parameters za; a ¼ e; i defined in Eq. (333;4), respectively. Moreover, v represents the type (i) coordinate while
u and j are type (ii) coordinates.

The kinematic boundary conditions are once more given by the expressions (21); furthermore, by putting

nL;R ¼
NL;R

EAb

; qL;R ¼
QL;R

EAb

; mL;R ¼
ML;R

EAblm

; ku;v ¼
ku;v lm

2EAb

, (36)

where ku=2 and kv=2 represent the stiffness of evenly spaced longitudinal and transversal elastic supports (Fig.
10b), respectively, the dynamic boundary conditions become

½xu0 � zev00 � kuu�0;‘ ¼ �nL;R,

½zeu
00 � Zv000 þ m€v0 � zi €u� kvv�0;‘ ¼ �qL;R,

Zv00 � zeu0½ �0;‘ ¼ �mL;R. ð37Þ

In this case the derivation of the element transfer matrix outlined in Section 2 starts by the matrix L in Eq. (11)
taking the form

L ¼
�ðxb2 þ O2Þ bðO2zi þ b2zeÞ

�bðO2zi þ b2zeÞ Zb4 þ O2ðmb2 � 1Þ

" #
. (38)

Then, along the line followed in the previous section, the transfer matrix invariants are obtained in terms of
the physical parameters in order to map the surfaces (6) and (7).

The selected parameter relevant to the results shown in Figs. 9 and 10 are x ¼ 2:0, zi ¼ 0:0, m ¼ 0:25,
‘ ¼ 5:0, Z ¼ 0:5 and ku ¼ 2:0. Therefore in the present analysis the inertial coupling is absent.

In the uncoupled case ðze ¼ 0:0Þ the mono-coupled longitudinal dynamics of the bar behaves like in the first
case, giving rise to a pass region for every frequency for ku ¼ 0:0, while the bi-coupled transversal one
coincides with the Euler beam resting on elastic supports [16]. The representation of the propagation regions
on the O–kv plane for ze ¼ 0:5 is provided by Fig. 12. As expected, the nonzero coupling parameter activates
the three-coupled dynamics and the relevant propagation scenario becomes more involved, including SSS and
CS regions.

The evolution from the uncoupled to the coupled dynamics in terms of propagation zones can be better
explained by referring to the O–ze plane as done in Fig. 13 for kv ¼ 1:0 and ku ¼ 2:0. When ze ¼ 0 the
bounding frequencies given by branches of curves r and s are found at the hinged–hinged single-beam natural
frequencies, given by On ¼ ½ðnp=‘Þ

4Z�1=2; the first three of them are found at O1 ¼ 0:279 (r), O2 ¼ 1:117 (s),
O3 ¼ 2:512 (r). The birth of free–free (or fixed–fixed) single-bar longitudinal natural frequencies can also be
observed, namely On ¼ ½ðnp=‘Þ

2x�1=2; the first three of them can be found at O1 ¼ 0:888 (r), O2 ¼ 1:777 (s) and
O3 ¼ 2:666 (r). The crossed curves in Fig. 13 represent the first six natural frequencies of the periodic
equivalent truss beam composed by two elements when v (type (i) coordinate) is free while u and j (type (ii)
coordinates) are locked. Their paths on the O–ze plane are always within either a PSS or a PPS region. Since
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Fig. 13. Propagation zones on the O–ze plane for kv ¼ 1:0 and ku ¼ 2:0.

Fig. 12. Propagation zones on the O–kv plane for ze ¼ 0:5.
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the periodic system is composed by two elements, two natural frequencies are found in each PSS region.
Moreover, as expected, for each pair, one natural frequency overlaps with a bounding frequency provided by
either r or s branches. Several crossing phenomena can be observed around O ¼ 0:9 and in the range
O ¼ 1:622:0.
7. Conclusions

Starting from the characteristic equation of the symplectic transfer matrix, three-coupled periodic structures
were analyzed on the space of the invariants. Such approach helped derive analytically the boundaries of the
combined stop, pass and complex domains. Pass–pass–pass and pass–pass–stop bands were both found to be
confined to a small neighborhood of the origin. Different paradigmatic mechanical models characterized by
constitutive elastic and/or inertial coupling between mono- and bi-coupled dynamics were discussed.
Constitutive elastic coupling in stiffened pipes and truss beams, and inertial coupling in thin-walled beam
resting on elastic supports, were tackled. Free-wave propagation domains on different physical parameters
planes were obtained through nonlinear mappings from the plane of the invariants. Such representation
provides the following remarkable insights: (i) a measure of the influence of the coupling parameters on the
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interaction between longitudinal or torsional (mono-coupled) and transversal (bi-coupled) dynamics; (ii) the
domains where natural frequencies must lie for given boundary conditions; (iii) a tool for predicting crossing
and veering phenomena.
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